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Abstract-A systematic approach for the exact calculation of multi-dimensional radiative heat flux in a 
cylindrical emitting-absorbing non-isothermal medium with non-isothermal bounding walls is described. 
Closed form exact solutions are obtained for radiative transfer inside (finite and infinite) cylinders and 
concentric cylinders with prescribed three-dimensional temperature distribution. For the special case of 
one-dimensional cylindrically symmetric situation, the exact solution obtained in the present work is 
shown to be equivalent to the exact solution obtained in a previous study, although the solution presented 
here is much more elegant in approach and simpler in form. Numerical results are also presented for the 

case of isothermal media bounded by piecewise isothermal walls. 

NOMENCLATURE 4, angle defined in Fig. 1; 

Bu, GL,L where cr, is the absorption coefficient angle defined in Fig. 1; 
and L is the reference length; L#&>~,, angles defined by equations (22b), 

C, constant of integration defined in (22c), (22d) and (25d). 
equations (1) and (3); 

C,Cl,C2, length of the finite cylinder; Superscripts 

I, specific radiation intensity; * quantities at the wall; 

L, reference length; 1, quantities associated with inner cylinder; 

L4,L direction cosines defined in equation (5); O, quantities associated with outer cylinder. 

&OL? 

space-integrated radiation intensity; 
L, normalized radiation heat flux in r, @, Subscripts 

and z-direction; 1, quantities associated with inner cylinder; 

4,,40>4Z, radiation heat flux in r, @ and z-direction; 0, quantities associated with outer cylinder; 

R, position vector in the cylindrical 93 radiative quantities resulting from 
coordinate system; medium emission; 

r, radius of the cylinder; w, radiative quantities resulting from wall 

SlrS2,S3, coordinates defined by equation (2) for a emission. 
three-dimensional temperature field, and 
by equation (4) for a two-dimensional INTRODUCTION 

temperature field; THE CALCULATION of radiative transfer in a cylindrical 
T, temperature; non-isothermal emitting-absorbing medium has 
Z, one of the cylindrical coordinates. attracted considerable attention in the past decade, 

because of its important applications in many high- 
Greek symbols temperature phenomena associated with planetary 

6 angle defined by equation (42a); reentry, nuclear explosion, laboratory shock-tube 

% absorption coefficient; studies, nuclear reactor, and industrial furnace designs. 

B> angle defined by equation (42b); Heaslet and Warming [l] as well as Kestin [2] have 
H. angle defined in Fig. 1; studied the problem of radiative transfer in a non- 
OS> &, &c, QE, OF, angles defined by equations (170, isothermal medium inside an axial symmetric infinite 

(17g), (21b), (25b), and (2%); cylinder. Tien and Abu-Romia [3] has obtained an 
0, Stefan-Boltzmann constant; exact solution for radiative transfer outside of a semi- 

infinite isothermal cylindrical medium, while Desoto 

*Graduate student under East-West Center grant. [4] considered the problem of emitting-absorbing axial 
j-Professor. symmetric pipe flow. These exact solutions for radiative 
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transfer in cylindrically symmetric medium are 
suggestive of having been obtained entirely from 
geometric considerations with no systematic and 
rigorously analytical approach to the problem; hence 
there is little scope to take into account the three- 
dimensional effects. 

where 

The difficulty in exact calculation of multi- 
dimensionalradiativetransferhasprompted researchers 
to develop approximate schemes such as the mean- 
beam length method [5,6], the zoning method [6-S], 
the differential approximation [9-l 11, and the Monte 
Carlo method [5, 12. 131 among others. Of all of these 
techniques. the differential approximation appears to 
be the most convenient, when applied to problems in 
radiation-coupled flows; because of its simplicity, 
generality, and analytical nature. However. the 

differential approximation has its own shortcomings. 
A comparison of the exact solution and differential 

approximation for the simple case of cylindrically 
symmetric one-dimensional situation shows that the 
differential approximation over-estimates the radiative 
heat flux on the inner surface of the concentric cylinders 
by a factor of two in the thin-gas limit, when the 

radius of the inner surface is small compared with the 
outer one [14]. Moreover, recent studies [15] suggest 
that the differential approximation would breakdown 
wherever the average radiation intensity is dis- 
continuous; a situation that will arise where the wall 
temperature is discontinuous. Thus an analytical 
approach for the exact calculation of multi-dimensional 
radiative transfer in cylindrical media is of fundamental 
and practical interest. 

A systematic and rigorous approach for the exact 
calculation of multi-dimensional radiative heat flux in 
rectangular geometries has been recently advanced by 
Cheng [ 151. In this paper, we shall extend this method 
to problems in cylindrical configurations. Particular 
attentionwill be placed on problems with discontinuous 

wall temperature distribution. 

EXACT SOLUTIONS 

In this section, we shall obtain the exact solutions 
of the radiation-transport equations in cylindrical 
coordinate system (see Fig. 1) when the temperature 
distribution of the medium and the wall are prescribed. 
We shall show that: 
(i) for a three-dimensional temperature field (r, a’, z) as 

well as axial symmetric temperature field (r, z), the 
formal solution to the radiation-transport equation 
is 

I(si,sz,s3,&4) = C(sz,sj,~,H)exp[-a,sll 

a.T,4(G,s2,s3,&@) 

x exp[a,(S; -ii)] d%, (1) 

si = rsinOcos~+zcos(I, s2 = -rsin& 

s3 = rcos0cos$-zsin(I, 

ST = r* sin 0* cos @* + z* cos O* and S; = s; -ST. (2) 

(ii) for two-dimensional (r, @) and one-dimensional (I’) 
temperature fields the formal solution for radiation 
intensity is 

I(s s2 4 Q)=C( 1, ? 1 .72, 4)exp -cc,S, 
i 1 sin Q 

+E s is1 -s:l~slnii 

n 0 
a,?1;‘(S;.S2,4.0) 

x exp[a,($ -Si)]d.?;, (3) 

where 

s, = rcos$, 72 = -rsin4. 

ST = r* cos $*, and .$ = (s\ -$)/sin II, (4) 

with the superscript “*” denoting quantities at the wall. 
The dummy variable Yi in equations (1) and (3) is the 

physical distance along si from an arbitrary field point 
to the bounding wall; and C is to be determined from 

the boundary condition. For the convenience of 
discussion, we shall henceforth refer to the first terms 
in equations (1) and (3) by I, representing the 
contribution resulting from wall emission, and the 
second terms by IB representing the contribution from 
medium emission. When the solution for I is obtained, 
the space integrated radiation intensity and the 
radiative heat flux are given by 

M(r,@,z)= I(r,Q,z,&O)dQ, i 

q=(r, @,. z) = I(r,@,z,$,U)/,dR. 

whereI,=e,.e,=sinOcos&lQ=e,.e~=sinQsin~, 
and 1, = en. e, = cos 8, with en given by 

e, = sinHcos~e,+sinOsin~ea,+cosOeZ. (6) 

Three-dimensional temperaturejield 
Consider the problem of radiative transfer in an 

emitting-absorbing cylindrical medium where the 
temperature distribution depends on r, 0, and z. The 
radiation intensity I is a function of position vector 
R given by R = r e,+z e,, and the unit directional 
vector e,. 
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The radiation-transport equation for an emitting- 

absorbing grey medium in local thermodynamic 

equilibrium is given by [ 161 
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We shall now discuss the determination of C for some 
specific problems. 

Emitting-absorbing medium inside a jinite cylinder. 
Consider an emitting-absorbing medium with pre- 
scribed temperature T,(r, Q’, z) inside a finite cylinder 
with wall temperatures given by T,(r,, @*, z*), 
T,(r*,@*,c,), and Tz(r*,@*, c2) where c1 < c2. The 
radiative boundary conditions are given by 

[ 

a sinesin a sinesin a 
sinOcos4aY+ ~-- ~ - 

r a@ r a0 

+cOs@i+r. I = ccaH,4(r,@,z)/7c, (7) ’ 1 
where tl, is the absorption coefficient and o the Stefan- 

Boltzmann constant. If a black bounding wall with 

temperature Tw(r*, @*, z*) exists in the radiation field, 
the radiative boundary condition is given by 

I(r*, @*,z*,4*,0*) = uT,(r*, @*,z*)/7c, (8) 

where r*, O*, z*, 4*, and Q* are specified. 
To obt’ain the formal solution of equation (7) with 

boundary condition (8), we recast these equations in 
terms of the new independent variables sj(j = 1,2,3) 
where s1 = R.e,, s2 = R.e,, s3 = R.e,; with e,, e+, 
and e, denoting the local spherical coordinates given by 

ed = -sin4e,+cos4%, 

e, = cosQcos~e,+cosQsinf$~-sinQe,. (9) 

The explicit expressions for sl, s2, s3 are given in 

equation (3). 
Equations (7) and (8) in terms of the new independent 

variables are 

I(sr,si,s:,e*,4*) = $(s:,s:,srJ?*,~*); (11) 

where 

ST = r*sin0*cos4*+z*cos0*, sz* = -r*sinf$*, 

and 
sJ = r* cos f3* cos f$* -z* sin 0*. (12) 

The solution of equation (10) with boundary 
condition (11) is given by equation (1). To determine 
C in equation (1) for each of the boundary conditions, 
we note from geometric considerations that 

e = e*, (13a) 
$* = 2X+(@++-@cD*), (13b) 

s2 = s2*, (13c) 

s3 = ST, (134 

which can be rewritten to give 

@* = (271+@+4)-sin-’ 
[ 1 ;sin4 , (144 

cosqb* = f$/(r*2-rzsinzq5), (1‘W 

z* = z-cotO(rcos4--r*cos4*). (14c) 

It is interesting to note that the coordinate @ appears 
in the solution through equation (14a). 

I(ro, @*, z*, Q*, 4*) = T(r,, @*, z*), 

Cl < z* < c2, ef.e;i < 0, (15a) 

I@*, @*, cl, Q*, 4*) = ‘$(I*, @*, cl), 

O<r*<r,, e:.ei > 0, (15b) 

O<r*<r,, e,*.e: < 0. (15~) 

Consider the boundary condition (15a). The limit 
e,. e, < 0 implies sin 0* cos 4* < 0 which gives 
cos 4* < 0 for 0 < 0* ,< Z. Thus we choose the negative 
sign for equation (14b) when it is substiiuted into 
equation (14~) with r* = r, to give 

z* = z-cot8[rcos4+J(+r2sin24)]. (16) 

With the aid of equations (2), (13), (15a), (15b) and (15c), 
it can be shown that for 0 < 4 < 27c and 0, < 0 < Q,, 
the medium and wall emissions are given by 

x exp[a,(S; -s,)] d$, (17a) 

and 

~~‘=$[r,,,@*,z*]exp[-~~(sl--s~)], (17b) 

where 

sl_sT = rcos4+Jkf-r2sin244 
sin 0 

(17c) 

@* = @+$-sin-’ , (174 

z* = Z-cotB[rcos$+J(r,Z-r2sin2$)], (17e) 

r cos 4 + Jirz - r2 sin’ 4) 

z--c1 

The limits for 8, in which equations (17a) and (17b) 
are valid, follow from the condition c2 < z* < c1 with 
the aid of equation (17e). 
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Similarly, imposing boundary condition (15b) gives Equations (18a) and (18b) are valid in the region 

I(l) = 0 

j 

)I -.,: 0 < Q < & and 0 < 4 < 2~. Similarly, imposing 

9 
rl” 

cc,~,4[s;,sZ,s3,~,~l boundary condition (15c), we obtain the expressions for 
1j2) and 1L2) which are identical in form as equations 

x exP[a~(%-.~i)]dS;~ (18a) (18a) and (18b) with Ti[r*,cD*,ci] replaced by 

~~“=~~[r*.~*,c,]exp[-a,(sl-s:)], (18b) rep,acedby 
T,[r* CD* c2] and with equations (18c), (18d) and (18e) 

x 

where z-cz 
sr-s: = ~ 

s, -$ - z-cl cos8’ 
(19a) 

COSO’ 
(18~) 

r* = J{r2sin24+[(z-c2)tan6)-rcosb]*}, (19b) 

r* = J{r’sin*~+[(z-cl)tanO-rcos4]*}, (18d) Q* = @+4 

and 

@,* = @+Q, { 

rsin+ 
-sin-’ Jc 2 . 2 

r sin ++[(z-c2)tan0-rcosb]*} 
(19c) 

-sin-’ 

1 

rsin$ 

J{r2sin2~+[(z-c1)tanB-rcos$]2} 
(18e) 

The expressions for 1L2) and 1c2) are valid in the limits w 

BC < 0 < rc, and 0 < C$ < 271. 

Thus the radiative quantities resulting from medium emission inside a finite cylinder is given by 

I$;;‘= j~j~~~“~~~d~+p~r,‘~~~d~+ j~[;:2’(:1dQ> (20) 

and those resulting from wall emission are also given by equation (20) with IpI, I;‘), and 1;“) replaced by 

12) !!,i). and JC2). 
We now c&sider the cases when the wall temperature is discontinuous. In these cases, the expressions for 

medium emission remains the same while the wall emission must be modified as follows. 
(i) If wall temperature at r = r, is discontinuous at z = 0 with T,, [ro, Q*, z*] for 0 < z* < c2 and T,_ [r,, @*, z*] 

for c1 < z* < 0, the radiative quantities resulting from wall emission are given by 

where I$*) is given by equation (17b) with To replaced by T,* and 

0, = tan-’ 
[ 

r cos 4 + J(r,f - r2 sin’ $) 

Z l- G’lb) 

(ii) If the wall temperature on r = r. is discontinuous along the peripheral angle at CD = 0, with T,+(r,,@*, z*) 

for 0 < @* < @ and z_(r,, @*, z*) for Q1 < @* < 0 and zero elsewhere, the radiative quantities resulting from 
wall emission are 

do, (22a) 
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where I:*) are given by equation (17b) with TO replaced by TO, and 

bA = tan-’ 
[ 

r,sin(@-@i) 
- 1 r-r,cos(@-cD,) ’ (2-W 

C#J~ = tan-’ (22c) 

[ 

r, 
&Stan-’ - 

sin@ - @) 1 r-r,cos(@-@,,) 
(224 

Axial-symmetric temperature jeld 
Consider radiative transfer in a cylindrical medium with axial-symmetric temperature distribution; i.e. both 

the medium temperature and wall temperature independent of Q The radiation-transport equation and boundary 
condition are given by 

[ 

a 1 
sinBcos$r+cOsQ~- 

sintlsin# F 

r 
G + c1, 1 I = tL,f7Tg4(r, 2)/n, 

,r 
(23) 

and 

I(r*, z*, 4*, Q*) = $ (r*, z*), (24) 

where r*, z* are the coordinates at the wall. 
It can be shown that equations (23) and (24), when expressed in the new independent variables sj(j = 1,2,3) 

given by equation (2), are identical to equations (10) and (11) which have the formal solution given by (1). 

To determine the constant C, we note that equations (13a), (13~) (13d) hold also for the axial symmetric 
situation which in turn gives equations (14b) and (14~). For the case of finite cylinder with axial symmetric 
temperature distribution, it can be shown that the exact solutions are identical in form with equations (17-22) 

by neglecting the temperature dependence of @ *. That the solutions for the axial symmetric case are directly 
obtainable from the three-dimensional situation, by just neglecting @*, can be explained by the fact that wall 
contribution remains the same no matter at what @* the e, vector projected backwards meets the wall. This 
identical nature of two solutions (the general and the axial symmetric) is well anticipated in view of sj in 
three-dimensional case being independent of 0; and hence the physical distance (s, -sr) of the given point 
from the wall in the direction of eR also is independent of @. 

Emitting-absorbing medium between concentric cylinders with jinite length. Consider an emitting-absorbing 
medium with axial symmetric temperature distribution inside concentric cylinders with finite length. The outer 

and inner wall temperatures are given by T,(r,,z *) and 7Jrirz*) respectively. The wall temperatures at z = c1 
and z = c2 are given by T,(r*,c,) and T2(r*,c2) respectively. In this case, it can be shown that the radiative 

quantities are given by 

{;:;;!;I =j:..iiB1)~~:}d*+~~~~D~~~~)~~:~d~+~~~*.~~~)~~:}d* 

where f&, B,-, 1!), I;‘), and 1;‘) are given by equations (17f) (17g), (17a) and (18a), and 

OE s tan-’ 
[ 

rcos C/I - J(rf - r2 sin* 4) 
_________ , 

z-c1 1 
&Stan-’ ____ 

[ 

rcos4-JO+-r’sin’+) 

z-c* I? 

(25’4 

(254 

4,Gsin-’ !I! 0 r ’ 

$9 s ! 

s 

[rcos)-Jlr:-r*sin’0)]/sinO 

n 0 
cc,T,4(S;,~2r~3,~,e)exp[a,(S;-S1)]dS;. 

(254 

We) 
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The radiative quantities resulting from wall emission is also given by equation (25a) with Ii’) and 1j2) replaced 
by 12) and I$?, and 1:) and 1:) replaced by 1:) and 1,‘$ where 

aTi4 
I$f)=---[rirz*]exp[-a&l-$)], 

7[ 

with 

and 

z* = z-cott?[rcos$-J(rz- rz sin’ 4)] and si -ST = rcos4 -J(rF -rz sin2 +), 

1:’ = T [r,,z*] exp[ -a&, -ST)], (26b) 

where z*, si -ST are given by equations (17e) and (17~). Equation (26b) could have been obtained from equations 

(17b) by neglecting the dependence on @. 

Two-dimensional temperaturejeld 
When the temperature distribution in a cylindrical medium is a function of r and @, and independent of z, 

the radiation intensity is a function of the position vector R = r e, and the directional vector eR. The radiation 
transport equation and boundary condition are independent of z, i.e. 

( d sirrOsin 8 
sin0cos4m+ ___- - 

sin0sin4 d 

a@ 
~- + a, 

r r 84 > 
I = a, aT4(r, @)/n , (27) 

I(r*,@*,4*,0*) = T(r*,@*), (28) 

where r*, Q*, +*, and 0* are specified on the wall. 

To obtain formal solution of equation (27) with boundary condition (29, it is convenient to recast these 
equations in terms of the new variables s1 and s2 where si = R ep and sz = R . e@ in which ep and e, are unit 

vectors of the local polar coordinates given by 

ep = cos+e,+sind,%, ed = -sinr$e,+cos4%. (2% 

It follows that 

si = R.e, = rcosq5, s2 = R.e,+, = -rsin$. (30) 

Equations (27) and (28) in terms of the new variables are 

( ! g + ab I’ = abuT,4[sl,s2,411n, 

and 

I’(sf,s4,4*) = $&:&,9*), (32) 

where sf = r* cos $*, sr = - r* sin 4*, a: = a&in 0, and I’(r, @, 4) = I(r, @, 4,0). 
If the absorption coefficient is constant, the formal solution to equation (31), when written in the original 

variables I, is given by equation (3). To determine C, we note that equations (13b) and (13~) also hold for the 

two-dimensional situation, which in turn yields equations (14a) and (14b). When the solution for I is obtained, 
the radiative quantities are determined from 

M(r, @) = 
s 

I(r,Q,4,Q)dC q,(r,@) = 
s 

I@,@,,$, W,dR, q&,@) = 
s 

I(r, @, h0)h da, (33) 
n R n 

and q,(r, @) = 0. We shall now consider some specific problems in a two-dimensional temperature field. 
Emitting-absorbing medium inside an infinite cylinder. Consider an emitting-absorbing medium with temperature 

distribution T&r,@) inside an infinite cylinder with wall temperatures at r = r0 given by T,+(r,,@*) for 
0 <: @* < D2 and T,_(r,,,cD*) for @i < @* < 0 and zero elsewhere. By imposing boundary conditions, it can be 
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shown that the radiative quantities resulting from medium emission are given by 

dR, 

where 

g [rcos4 + ,/rr: -rzsin’~)]/sin 0 

I, = - 

s n 0 
a,Tg4(S;,sz, 4,B)exp[cr,N -&)I d$. 

whereas those resulting from wall emission are given by 

{~~~~~~}=~~~~=o~~+‘{~}d~+rio~~-‘~}d~. 

where 

pi) = 
w 

OS+ Lro, @*, exp[ _ drcos 4 +yi$- rz sin’ 4111, 

(34a) 

(34b) 

(354 

W-4 

with @* = CD+ 4 -sin- ’ (r/r, sin 4) and $A, &, and & given by equations (22b22d). 
Equation (35b) could have been obtained directly from the general three-dimensional case equation (17b) by 

neglecting z* because the wall contribution in this case remains unaltered no matter at what z*, e, vector projected 
backwards meets the wall. The limits eB and 6, as given by equations (17f) and (17g) reduced to 0 and n when 
cl+-coand~-+co. 

One-dimensional temperaturejeld 
When the temperature distribution is a function of r alone, the radiation intensity is a function of the position 

vector R = re, and the directional vector e,. The radiation-transport equation and boundary conditions are 
given by 

( sinOcos+ar- 
a sinesin a +cc 

-z$ D 1 

I=~,~T,4 
r 

+r), 

and 

I(r*,$*,8*) = uG(r*), 

(36) 

(37) 

It can be shown that equations (36) and (37) in terms of the new variables si and s2 given by equations (30) 
reduce to equations with the same form as equations (31) and (32), which have the formal solution given by 
equation (3). To determine C, we note that 

which gives 

s2 = sz, (38) 

COS 4* = f Jp J(r*2 - r2 sin2 4). 

We shall now consider the cases of emitting-absorbing medium inside an infinite cylinder and inside and outside 
of an infinite concentric cylinder where temperature distribution is a function of r and independent of @ and z. 

Emitting-absorbing medium inside an infinite cylinder. Consider an emitting-absorbing medium with temperature 
T,(r) in an infinite cylinder with wall temperature given by T, at r = r,. Imposing the boundary condition gives 

aTo4 
I,(r, 4, e) = --exp 

[ 

a,(rcos4+J(roZ-r2sin24)) 
- 

n sin e I. FW 
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The radiative quantities resulting from medium emission are 

and those resulting from wall emission are 

(414 

@lb) 

Equation (40b) for a one-dimensional case could have been obtained directly from the two-dimensional case by 
neglecting @* or from the three-dimensional case by neglecting both @* and z* and by letting c1 --$ -cc and 
c2 + co; thereby finding the appropriate limits for f3 as being from 0 to 7~. The reason for neglecting @* and z* is 

because the wall contribution in this case remains unaltered, no matter at which @* and z*, en vector projected 

back meets the wall. 
We shall now prove that equation (40) is indeed equivalent to a much more complicated solution obtained 

by Kestin [2] who gave two separate expressions for the radiation intensity for 0 < x < r,cosfl and 
r, cos /I < x < 2r, cos 8. The complication of Kestin’s solution is owing to the particular coordinate system chosen 

for the problem. To show the equivalence of the two solutions, we note that the angles u and /I in Kestin’s 

paper are related to 0 and 4 in the present work by the relations 

x=2_N 
2 * 

(‘tpd) 

sin/I = i~sin4. 
r,, 

(42b) 

With the aid of equations (42), the integral 

in Kestin’s paper can be integrated to give 

-= -,,(rcoss+J[r,2-r’sinf$]). 

Thus our expression for wall emission is identical to that obtained by Kestin. For the medium emission, we 

note that the relation dx = r dr/[r’ -- r,’ sin’ 81 ri2 in Kestin’s paper can be shown to be equivalent to 

dr dr 
d.u = - .-~ .- = _.__ 

%FP,8) cosd’ 

Furthermore, since sI = rcos 4. and s2 = rsin 4 = constant, the differentiation of s1 and s2 gives 

Equations (44) and (45) establish the identity between dx and dsI in two papers under comparison. With the 
aid of these equations, it is now apparent that Kestin’s expression for medium emission (0 < x < r,cos fl) 

(46) 

with n = cos a 

can be reduced to our expression given by equation (40a). 
Emitting-absorbing medium between injinite concentric cylinders. Consider an emitting-absorbing medium with 

axial symmetric temperature distribution between. infinite concentric cylinders with outer and inner wall 
temperatures given by T,(r,) and T(ri) respectively. By imposing the boundary conditions, it can be shown that 
the radiative quantities resulting from medium emission are given by 

(47) 
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where 

and those resulting from wall emission are also given by equation (47) with I$‘) and 1;) replaced by I$) and 1:) 
which are given by equations (26) by dropping the dependence on z*. 

Emitting-absorbing medium outside of an infinite cylinder 
For thecaseof an emitting-absorbing medium with temperature distribution T,(r) outside of an infinite cylinder, 

solution can be obtained from equation (47) by letting r0 -+ co and T, = 0. 

RESULTS AND DISCUSSIONS 

Numerical results are obtained for special cases of isothermal media inside cylinders and concentric cylinders 
with finite and infinite length, bounded by isothermal and piecewise isothermal walls. In these special cases the 
expressions for radiative quantities given in the previous section can be simplified considerably. For example, 
the radiative quantities in an isothermal medium inside a finite cylinder bounded by isothermal walls at z = + c, 
and piecewise isothermal wall at r = r, given by equations (20) and (22) can be simplified to give 

_ Bu(icos#-t-J(Fz--?j2 sin2 4)) 

sin 0 
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where II? = M,‘4aT0’. Q = qjcrTo4, Tg = T,IT,, i = r;iL , P = z/L, ? = cJL and Bu = a,L, with To and L denoting 
the reference temperature and reference length. For simplicity of presentation and discussion, we shall henceforth 
omit the “_“’ ‘md all radiative quantities are understood to be normalized variables. For the special case of 
T4 = To, = T, = T, = 1, equations (49a) and (49b) yield 

M4 + M,+ = 1. Qyr + Qx>, = 0, Qqc,, + Q,v,,> = 0. Qsz + Q,,,- = 0. (50) 

Relations analogous to equations (50) are valid whenever medium and walls are maintained at the same temperature. 

Figure 2 shows the comparison of radiation fields 
along the radial direction at plane 2 = 0. for an 
isothermal medium (T, = 1) enclosed by a finite 
(r, = c = 1) as well as an infinite (r, = 1 and c + ZI) 

cylinder with isothermal walls (T, = I). A similar 
comparison for finite and infinite concentric cylinders 
(r,, = 1, ri = 05) is shown in Fig. 3. In both of these 

plots, it is observed that for a specific value of Bu, the 
value of i’vf, as well as QY, (= -Q,,,,) increases as the 

length of cylinder is increased, (ii) the effect of length, c, 
however, is negligible for Bu = 5.0 (i.e. for an optically 
thick gas) indicating. thereby, that a three-dimensional 
problem can be approximated by a two-dimensional 
one without any significant loss of accuracy under these 
circumstances, (iii) the boundary-layer behavior near 
the walls becomes more pronounced as the magnitude 
of Bu is increased; this phenomenon can be explained 
on account of the exponential damping effect: that is, 
for large BLI. the wall effects are felt only in the region 

near the walls, (iv) for small values of Bu, M, >> M4 

and Q,, (= -Q!,,) is small everywhere. The detailed 
variation of radiative quantities along the radius is, 

however, different for the case of a cylinder from that of 
a concentric cylinder. For the case of an isothermal 

FIG. 1. Cylindrical coordinate system. 

I.0 0 
(a) T,=T,=bO , r.=,.O 

-_Brzc,.r----- 
_A-/ 

0.9 l-----d 0.1 
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---- Finde cylinder ‘01~ = I.0 

- InfInite cylinder ‘VCC-0 
0.2 

---- Finite cylinder r”/c :I.0 
0,6 

-Infinite cylinder ‘“lc - 0 

-0 0.2 0.4 @6 0.6 

FIG. 2. Comparison of radiation fields along (r. o) in an isothermal medium inside finite 
and infinite cylinders with isothermal walls. 
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0.6 t 

-0.6 

-0.9 

--- Finda toncentr~ cylmderg 
‘vc = I.0 

- Infinite concentrlc Cylinders 
G/c - 0 

FIG. 3. Comparison of radiation fields along (r, o) in an isothermal medium inside finite 
and infinite concentric cylinders with isothermal walls. 

medium inside a cylinder (Fig. 2), MB is maximum at 
the center (r = 0) and decreases away from the center 
whereas C&, is zero at the center and increases to a 
maximum at the wall (r = 1). In case of an isothermal 
medium between concentric cylinders (Fig. 3). MB 
is a maximum at a point near halfway between inner 
and outer cylinders. The value of Qg, is negative on the 
surface of inner cylinder, and positive on the surface of 
outer cylinder. This result is intuitively anticipated 
because the net heat flux in the r-direction from the 
hot medium, enclosed by inner and outer cylinders at 

zero wall temperature, will cross the inner surface in 
the negative direction of r, whereas it will cross the 
outer surface in the positive direction of r. 

Figure 4 shows the comparison of radiative 
quantities along z-direction on the wall at r = 1, for an 
isothermal medium enclosed in an isothermal cylinder 
as well as isothermal concentric cylinders with finite 
length. It is shown that the variation of radiative 
quantities along (1, z) in Figs. 4(a) and (b) has 
qualitatively the same shape as those along (r,o) in 
Figs. 2(a) and (b). In Fig. 4 it is shown that values of 

r. . C. 1.0, T,. T+P I.0 

0.4 . .._. F&e concen,,~ 0.6 

0.3 0.7 
- Fmite cylinder 

0.2 0.8 

0.1 0.9 

0 I.0 
0 0.2 0.4 0.6 0.6 I.0 0 0.2 04 0.6 D6 I.0 

Z Z 

0.3 
- Finite cyhder 

@2 

0 
0 0.2 0.4 0.6 0.6 I.0 

Z 

FIG. 4. Comparison of radiation fields along (1,~) in an isothermal medium inside cylinder and con- 
centric cylinders with finite length bounded by isothermal walls. 
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Mg and Q,, (= -Q,,,) in case of a cylinder are higher 
than those between concentric cylinders. Also it is ob- 
served that Mg and Q, have maximum values at z = 0 

and the same decrease as z = I is approached. This is 
also a well anticipated result and is explainable by the 
fact that at z = 1, the radiative quantities associated 

with wall become more predominating than those 
associated with the medium due to the effect of emitting 
plates placed at z = & 1. 

The effects of discontinuous wall temperature at 
I’ = 1 on radiative quantities resulting from wall 
emission in a finite cylinder are shown in Figs. 5 and 

6. Figure 5 shows the case where wall temperature is 
discontinuous at @ = 0 and d, = 71 (with T,- = 1.1 for 
71 < Q, < 27~ and To+ = 1.2 for 0 < CD i n) whereas 

Fig. 6 shows the case where wall temperature is 
discontinuous at z = 0 (with T,_ = 1.1 for - 1 < z < 0 
and T,, = 1.2 for 0 < z < 1). It is observed from these 
plots that: (i) at the point where wall temperature is 
discontinuous, M, has a jump in value due to 
differential wall temperatures across the point of dis- 

continuity; this jump depends only on the wall tem- 

peratures and is independent of Bu, (ii) whereas the 
heat flux component is continuous in the direction in 
which wall temperature is discontinuous, heat flux 
components in all other directions are discontinuous. 

For example, Fig. 5 shows the case where wall 
temperature at r = 1 is discontinuous in @ direction. 
It is observed in this plot that Qh.fl, is continuous but 
QW, is discontinuous at Q, = 0. Similarly. Fig. 6 shows 

(b) 
-1.6 

B0=IO 2.4 
1 (b) 

0.24 
1 (cl 

0.6 

-1.0 -@6 -@2 0.2 0.6 I.0 
Z 

FIG. 5. Effects of discontinuous wall 
temperature in @-direction on the 
radiation field inside a finite cylinder. 

FIG. 6. Effects of discontinuous 
wall temperature in z-direction on 
the radiation field inside a finite 

cylinder. 
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the case where wall temperature is discontinuous in 
z-direction. It is shown that Q,,,, is continuous whereas 
QW, is discontinuous at z = 0. (iii) Away from the 
wall (r = 05 for example), all radiative quantities are 
continuous. 

The first two observations can be shown analytically 
as follows. Consider the case where wall temperature 
(at r = ro) is discontinuous at @ = 0, and @ = rc, as 
indicated in Fig. 5. On the wall at r = r,, equation (49b) 
can be rewritten as 

+ ‘tb”- 48 % JJ [ exp - 
2Bu Focos 4 dn 

71 o4 e8 sin0 

+ g xl2 ec JJ [ exp - 
2BuF0ccos4 

7t b ee sin H 

1 

+ c W2 ec 1, 

J J-l 1 

dR 

l-t n/2 ee 41 

L 

+ F J3z2 Jerexp[ - 2Bur;s’ dR 

x+ 4” SC 
+- JJ [ exp - 

2BuF0cos@ 

i7 me es sin0 

The first and the last integrals in equations (5la) and 
(51b) account for the isothermal wall emission from 
the top and bottom plates at z = f c. The remaining 
integrals represent the wall emission at r = r,; the 
physical meaning of these integrals can be easily seen in 
Fig. 7. The second, third, and fifth integrals in 
equation (51a) represent incident radiation at the point 
P while the fourth integral represents the local wall 
emission. Similarly, the second, fourth and fifth 
integrals represent incident radiation at the point M 

FIG. 7. Physical significance of the 
integrals in equations (51a) and (51 b). 
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with the third integral representing the local wall 
emission at the same point, Consider the points at 
@ = ot and Q, = o- on the wall (r = 1) and at z = 0 
(see Fig. 7). It can be shown from equations (51a) and 
(51 b) that at these points incident radiation are 

identical, and that the radiative quantities. if they are 
different at all, are due to the local wall emission 

which in turn depends on the local wall temperature. 
Thus the jump in values at @ = 0 are given by the 

difference resulting from local wall emission, i.e. 

4AM,, 

AQwr 
AQtio 1 

1 

1, 

L I dR 

These values are indeed confirmed by the numerical 
results. 

The above argument is only valid at the wall. Away 
from wall there is no local wall emission, and radiation 
from all points on the wall are incident radiation. Since 
any point in the radiation field “sees” all parts of the 

walls, the radiative quantities are continuous away from 
the wall. It should be noted that the value of Qd in 
Fig. 5(c) is almost symmetrical about @ = 0 at Bu = 1. 
It is expected that for higher values of Bu, the 
unsymmetrical distribution of Qw,t, will become 
apparent: because for higher values of Bu, most of 
incident radiation originated from the wall at a position 

further away, is absorbed by the optically thick medium 
before it can reach the point under consideration, and 
hence local emission predominates more at this point, 

and thus bring out the effect of discontinuous wall 
temperature on Qwn, more clearly. Furthermore, since 
M, is discontinuous along @ (at I’ = 1) in Fig. 5, and 
is discontinuous along z (at r = 1) in Fig. 6, the 
derivatives (;M,,,/F@ in Fig. 5 and ?M,/?z in Fig. 6 are 

not. therefore, unique at r = 1. Consequently, 
differential approximation cannot be applied in such 

a case [15]. 

CONCLUDING REMARKS 

In this paper we have obtained the exact expressions 
for multi-dimensional radiative heat flux in cylindrical 
coordinate system, in terms of its temperature 
distribution, explicitly. With this expression for 
radiative heat flux, exact formulation of multi- 
dimensional radiation-coupled energy-transport prob- 
lems in cylindrical coordinate is now possible. The 
result will lead to a set of integro-differential equations 
which will require numerical solutions. 

The key to the success of the present approach in 
obtaining exact expressions for multi-dimensional 

radiative heat flux,in terms of temperature distribution, 
lies in the identification of the coordinate trans- 
formation, equation (2) the relations [14] for a three- 
dimensional temperature field, and the corresponding 

equations for a two-dimensional temperature field. 
These relations are different from the corresponding 
relations for the rectangular coordinate system 

presented in [ 151. 
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TRANSFERT MULTIDIMENSIONNEL PAR RAYONNEMENT DANS UN 
MILIEU CYLINDRIQUE NON ISOTHERME LIMITE PAR DES PAROIS 

NON ISOTHERMES 
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R&urn&On dkcrit une approche systkmatique du calcul exact du flux thermique multidimensionnel 

par rayonnement dans un milieu non isotherme qui Cmet et absorbe, avec des parois non isothermes. 

Des solutions exactes finies sont obtenues pour le transfert h I’interieur de cylindres (finis ou infinis) 

et de cylindres concentriques avec une distribution de tempkrature tridimensionnelle. Dans le cas spPcial 
d’une situation axisymttrique et monodimensionnelle, la solution exacte obtenue est kquivalente a une 
solution exacte d&ja obtenue dans une autre ktude, bien que celle qui est prksentke ici soit plus &gante 
dans l’approche et de forme plus simple. On prCsente aussi des rCsultats numeriques dans le cas d’un 

milieu isotherme limit& par des parois isothermes par morceaux. 

MEHRDIMENSIONALER STRAHLUNGSAUSTAUSCH IN NICHT ISOTHERMEN, 
ZYLINDRISCHEN STOFFEN MIT NICHT ISOTHERMEN GRENZFLACHEN 

Zmammenfaswng-Es wird eine systematische Naerung fiir die exakte Berechnung des mehrdimen- 
sionalen Strahlungs-Wlrmestroms in einem zylindrischen, emittierenden und absorbierenden, nicht 
isothermen Stoff mit nicht isothermen Grenzlllchen beschrieben. Man erhdt exakte Li%ungen in 
geschlossener Form fiir den Strahlungsaustausch innerhalb (endlicher und unendlicher) Zylinder und 
konzentrischer Zylinder mit vorgegebener dreidimensionaler Temperaturverteilung. Fiir den speziellen 
Fall der eindimensionalen zylindrischen Symmetrie wird gezeigt, dalj die exakte LGsung, die in der 
vorliegenden Arbeit gewonnen wird, der exakten Liisung entspricht, die in einer friiheren Arbeit angegben 
wurde, obgleich die vorliegende Liisung viel eleganter in der Nlherung und einfacher in der Form ist. 
Fiir den Fall des isothermen Stoffes, der durch teilweise isotherme W%nde begrenzt ist, werden such 

Zahlenwerte angegeben. 

MHOTOMEPHblti JIYqMCTblti TEILJIOO6MEH B HEM30TEPMMYECKOrl 
LIMJIMHfiPMqECKOfi CPEJJE C HEM30TEPMM~ECKMMM CTEHKAMM 

AHHoTaues - B pa6o-re OnMCblBaeTC5l MeTOn TOYHOrO paCYeTa MHOrOMepHOrO JlyYMCTOrO TeWlOBOrO 

noTOKa B UAnMHnpHYeCKOFi M3nyYatotUe-nomoluaboulefi HeH3OTepMMYeCKOfi cpeae c HeM30TepMW 

YecKMMH CTeHKaMH. nO,QJYeHbI TOYHbIe peLUeHMa B 3aMKHyTOfi @OpMe fl,IR flyYMCTOr0 nepeHOCa 

BHY~~H KOHeYHblX M 6eCKOHeYHbIX UPiJWiHnpOB, a TaKme B KOHUeHTpHYeCKMX UWlMHnpaX C 3aLiaHHblM 

TpexMepHblM pacnpeneneHRer4 TeMnepaTypbr. FIoKa3aH0, qT0 ann YacTHoro cnyqan onHoMepHor0 
CMMMeTpkiYHOrO UMJWiHLlpa TOYHOe p‘?UIeHtie, nonyYeHHoe 6 3T0~ ACClle~OBaHHH, 3KBHBXWSHTHO 

TOYHOMY pemeHki+o npenblnymefi pa6OTbl, XOTR tfacTofluee pemeHHe IBJlSleTCII 6onee 3JIeraHTHblM 

A npOCrb,M no +opMe. IIpencTaaneHbl TaKme Yi4CneHHble pe3yJIbraTbl nm H30TepMWYeCKOfi cpenbr, 

OrpaHMYeHHOti KyCOYHblMM MSOTepMHYeCKMMM CTeHKaMH. 


