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Abstract—A systematic approach for the exact calculation of multi-dimensional radiative heat flux in a
cylindrical emitting-absorbing non-isothermal medium with non-isothermal bounding walls is described.
Closed form exact solutions are obtained for radiative transfer inside (finite and infinite) cylinders and
concentric cylinders with prescribed three-dimensional temperature distribution. For the special case of
one-dimensional cylindrically symmetric situation, the exact solution obtained in the present work is
shown to be equivalent to the exact solution obtained in a previous study, although the solution presented
here is much more elegant in approach and simpler in form. Numerical results are also presented for the
case of isothermal media bounded by piecewise isothermal walls.

L,

lrs lOa lzs
M,

Qra Q‘Dan»

qr, 4o, 4z,
R,

r,
51,852,853,

T,
z’

NOMENCLATURE

o,L where o, is the absorption coefficient
and L is the reference length;
constant of integration defined in
equations (1) and (3);
length of the finite cylinder;
specific radiation intensity;
reference length;
direction cosines defined in equation (5);
space-integrated radiation intensity;

normalized radiation heat flux in r, ®,
and z-direction;
radiation heat flux in r, ® and z-direction;
position vector in the cylindrical
coordinate system;
radius of the cylinder;
coordinates defined by equation (2) for a
three-dimensional temperature field, and
by equation (4) for a two-dimensional
temperature field;
temperature;
one of the cylindrical coordinates.

Greek symbols

a,

O,

B,

0,

93’ BCa HBC7

g,

angle defined by equation (42a);
absorption coefficient;

angle defined by equation (42b);

angle defined in Fig. 1;

0k, 05, angles defined by equations (171),
(17g), (21b), (25b), and (25¢);
Stefan—Boltzmann constant;
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&, angle defined in Fig. 1;
D, angle defined in Fig. 1;
b4, 05, ¢0c,dp, angles defined by equations (22b),
(22¢), (22d) and (25d).
Superscripts
* quantities at the wall;
i, quantities associated with inner cylinder;
0, quantities associated with outer cylinder.
Subscripts
i, quantities associated with inner cylinder;
o, quantities associated with outer cylinder;
g radiative quantities resulting from
medium emission;
w, radiative quantities resulting from wall
emission.
INTRODUCTION

THE CALCULATION of radiative transfer in a cylindrical
non-isothermal emitting-absorbing medium has
attracted considerable attention in the past decade,
because of its important applications in many high-
temperature phenomena associated with planetary
reentry, nuclear explosion, laboratory shock-tube
studies, nuclear reactor, and industrial furnace designs.
Heaslet and Warming [1] as well as Kestin [2] have
studied the problem of radiative transfer in a non-
isothermal medium inside an axial symmetric infinite
cylinder. Tien and Abu-Romia [3] has obtained an
exact solution for radiative transfer outside of a semi-
infinite isothermal cylindrical medium, while Desoto
[4] considered the problem of emitting—absorbing axial
symmetric pipe flow. These exact solutions for radiative
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transfer in cylindrically symmetric medium are
suggestive of having been obtained entirely from
geometric considerations with no systematic and
rigorously analytical approach to the problem; hence
there is little scope to take into account the three-
dimensional effects.

The difficuity in exact caiculation of multi-
dimensional radiative transfer has prompted researchers
to develop approximate schemes such as the mean-
beam length method [5, 6], the zoning method [6-8],
the differential approximation [9-11], and the Monte
Carlo method [5, 12, 13] among others. Of all of these
techniques, the differential approximation appears to
be the most convenient, when applied to problems in
radiation-coupled flows; because of its simplicity,
generality, and analytical nature. However, the
differential approximation has its own shortcomings.
A comparison of the exact solution and differential
approximation for the simple case of cylindrically
symmetric one-dimensional situation shows that the
differential approximation over-estimates the radiative
heat flux on the inner surface of the concentric cylinders
by a factor of two in the thin-gas limit, when the
radius of the inner surface is small compared with the
outer one [ 14]. Moreover, recent studies [15] suggest
that the differential approximation would breakdown
wherever the average radiation intensity is dis-
continuous; a situation that will arise where the wall
temperature is discontinuous. Thus an analytical
approach for the exact calculation of multi-dimensional
radiative transfer in cylindrical media is of fundamental
and practical interest.

A systematic and rigorous approach for the exact
calculation of multi-dimensional radiative heat flux in
rectangular geometries has been recently advanced by
Cheng [15]. In this paper, we shall extend this method
to problems in cylindrical configurations. Particular
attention will be placed on problems with discontinuous
wall temperature distribution.

EXACT SOLUTIONS
In this section, we shall obtain the exact solutions
of the radiation-transport equations in cylindrical
coordinate system (see Fig. 1) when the temperature
distribution of the medium and the wall are prescribed.
We shall show that:

(i) for a three-dimensional temperature field (r, @, z) as
well as axial symmetric temperature field (r, z), the
formal solution to the radiation-transport equation
is
1(s1,52,53,0,¢) = C(s2,53,0, 0) exp[ ~az51]

o 51 Sy %
+~J‘ aan4(§,1~52’537¢’0)

TJo
x explea (51 —35,)]ds:, (1)

where

sy =rsinflcosp+zcosl, s, = —rsing,
s3 = rcosflcos p —zsind,

st = r¥sint*cosp* +z*cos0* and §) =57 —sF, (2)
(ii) for two-dimensional (r, ®) and one-dimensional ()

temperature fields the formal solution for radiation
intensity is
0,81

I(sy,52,¢,0) = C(s,, ¢) exp[—sing}

o sy —st)sint
+ - o, THE, . 52. 0,0
7o alg 192 d) )

x exp[o,(3 —§,)]d5, (3)
where
S, = —rsing,
§1 = (sy—stH)/sinl, (4)

s, = rcos o,

st =r*cos¢*, and

with the superscript “*” denoting quantities at the wall.
The dummy variable §) in equations (1) and (3) is the
physical distance along s, from an arbitrary field point
to the bounding wall; and C is to be determined from
the boundary condition. For the convenience of
discussion, we shall henceforth refer to the first terms
in equations (1) and (3) by I, representing the
contribution resulting from wall emission, and the
second terms by I, representing the contribution from
medium emission. When the solution for [ is obtained,
the space integrated radiation intensity and the
radiative heat flux are given by

”

M@, ®,2) = | I(r,®,z,¢,0)dQ,
Ja
4 ®.z2)= | 1(r,®,2,6¢,0),dQ,
Jo
. (5)
qo(r,®,2) = | 1(r,®,2,¢,0)lp dQ.
Je
q:(r,®,z)= | I(r,®,z,¢,0),dQ.
Q

Y

where I, = e,.e, =sinfcos ¢, I, = e,. e, = sinfsin g,
and [, = e, .e, = cos 6, with e, given by

e, =sinficosgpe,+sinfsinpey+coslle,.. (6)

Three-dimensional temperature field

Consider the problem of radiative transfer in an
emitting-absorbing cylindrical medium where the
temperature distribution depends on r, @, and z. The
radiation intensity I is a function of position vector
R given by R=re,+ze,, and the unit directional
vector eq.
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The radiation-transport equation for an emitting—
absorbing grey medium in local thermodynamic
equilibrium is given by [16]

[Singcos¢a%+smBrsmqba%_sm():.md) a_(’;
lé}
Frs oc,,:ll =a,0THr,®,2)/m, (7)

where o, is the absorption coefficient and ¢ the Stefan—
Boltzmann constant. If a black bounding wall with
temperature T, (r*, ®*, z*) exists in the radiation field,
the radiative boundary condition is given by

I(r*, @*, 2%, *, 0%) = o THr*, ®*, %)z, (8)
where r*, ®*, z*, ¢*, and 6* are specified.

To obtain the formal solution of equation (7) with
boundary condition (8), we recast these equations in
terms of the new independent variables s,(j = 1,2,3)
where 5; = R.eq, 5; =R.e,, s3=R.e;; with eg, e,
and ey denoting the local spherical coordinates given by

e, = —singe,+cospey,
€, ==cosfcospe,+coslsingde,—sinfe,. (9

The explicit expressions for sy, s;, s3 are given in
equation (3).

Equations (7) and (8) in terms of the new independent
variables are

0
[ +aa]1(51,52,53»9 ¢) =
s

u, 0T}

(s1,52,53,0,¢), (10)

oT}
I(s¥,53, 5%, 0%, %) = —(st,5%,53,0*%, 0%, (11)
i
where

st = r*sinf*cos ¢* +z* cos 6*, 5% = —r*sin ¥,

and

5% = r*cos 0* cos ¢* — z*sin 0*. (12)

The solution of equation (10) with boundary
condition (11) is given by equation (1). To determine
C in equation (1) for each of the boundary conditions,
we note from geometric considerations that

0 = 6%, (13a)
¢* =2n+(P+ ¢ —D¥), (13b)
sy = 5%, (13¢)
sy = s¥, (13d)
which can be rewritten to give

O* = 2n+ D+ ¢p)—sin! [L*sin (b:l, (14a)

r
cos ¢* = + i*\/(r*Z—ﬂ sin2g),  (14b)
z* = z—cot 8(rcos ¢ —r* cos ¢*}. (14¢)

It is interesting to note that the coordinate ® appears
in the solution through equation (14a).

We shall now discuss the determination of C for some
specific problems.

Emitting—absorbing medium inside a finite cylinder.
Consider an emitting-absorbing medium with pre-
scribed temperature T(r,®,z) inside a finite cylinder
with wall temperatures given by T,(r,, ®*, z%),

T (r*,®* c,), and T,(r*, ®* c;) where ¢; < ¢,. The
radiative boundary conditions are given by
100, 0%,22,0%.9%) = 710 1, %, 29),
c1 < z* < ¢y, e¥.ef <0, (15a)

I(r*, @*, ¢y, 0%, %) = (r* d* cy),

0 <r*<r, e*et>0, (15b)
10004, 65,0%0%) = 712 o0 g ),

0<r*<r,, e*ef<0. (150

Consider the boundary condition (15a). The limit
e.e, <0 implies sin6* cos ¢* <0 which gives
cos¢* < 0for0 < 0* < = Thus we choose the negative
sign for equation (14b) when it is substituted into
equation (14c) with r* = r, to give

z* =z—cotO[rcosp+./(rZ—r*sin?)]. (16)

With the aid of equations (2), (13), (15a), (15b) and (15¢),
it can be shown that for 0 < ¢ <2 and 6, < 0 < 0.,
the medium and wall emissions are given by

0 0 i 4

= ~7

19 _; aaTg(Sl>S27SS’¢99)
o

x expla,(3, —5)]ds,, (17a)

and
= [ro,(I)* z*] exp[ — os(s; —5¥)], (17b)
where
222
Sl_sf=rcos¢+\/(.ro r?sin d)), (170
sin )
v =0rp-sin(Lsing). (7
z* = z—cotB[rcos ¢ +./(rf —rsin? ¢)], (17¢)
0 Etan_1{1‘003([)—t~\/(r,f—r"‘sinzd)) (17
B z—cy ’
005tan_1{rcos¢+\/(r3—rzsin2¢)} (178)
Z—Cy

The limits for 6, in which equations (17a) and (17b)
are valid, follow from the condition ¢, < z* < ¢, with
the aid of equation (17e).
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Similarly, imposing boundary condition (15b) gives Equations (18a) and (18b) are valid in the region
o —st 0<0<6; and 0 < ¢ <2r Similarly, imposing

IV= gf o, T, (31, 52,53, ¢, 0] boundary condition (15¢), we obtain the expressions for
TJo I{* and I¥ which are identical in form as equations

x explo,(81—31)]ds1, (18a)  (18a) and (18b) with T[r*,®*c;] replaced by

) _ gl{‘ . B . T, [r*,®*, c,] and with equations (18c), {18d) and (18e)
Iw 1 [l" 7(1) > Cl] CXP[ aa(sl S])], (18b) replaced by
where —
si—st=""2, (192)
z—0y cos 6

—st="_"1 18
R cos 0 (18 r* = /{r*sin? ¢+ [(z—cy)tan6—rcos p]*}, (19b)

r* = J{r¥sin? ¢ +[(z—c,)tanf—rcosp]*}, (18d) @* = D+¢

and .
* —sin™* pe rsing 5 - (19¢)
O* =0+¢ J{r*sin?¢ +[(z—c,)tanf—rcos 9%}
~sin! rsing (18e)
J{r?sin?¢+[(z—c,)tanf—rcos p]*} The expressions for I and I are valid in the limits

0. <0<mand0< ¢ <2m.

Thus the radiative quantities resulting from medium emission inside a finite cylinder is given by

M,(r,®,z) 1 1 1

‘Igr("sd)’z) fzn rﬂ Ji8 L r" Jﬂr (0) L JZ" Jn 2) L
= dQ+ I dQ+ I dQ, (20)

9yo(r. @, 2) o Jo * lo 0 Jo ’ ly 0 Je ‘ lo

4= (r, @, 2) I 1 L,

and those resulting from wall emission are also given by equation (20) with I, I, and I!* replaced by
IO 1Y, and 1.

We now consider the cases when the wall temperature is discontinuous. In these cases, the expressions for
medium emission remains the same while the wall emission must be modified as follows.

(i) Ifwall temperature at r = 7, is discontinuous at z = O with T, . [r,, ®*,z*] for 0 < z* < ¢, and T, [r,, ®*, z*]
for ¢; < z* <0, the radiative quantities resulting from wall emission are given by

M, (r,®,z) 1 1 1 1
qwr(r5 (I)» Z) J‘zn JOB Ir Jzn J‘GBC _ l, 2r (B lr 2 *n l
= Ly dQ+ 5o dQ+ LY dQ+ 124" 4dQ,
4w (r s (I)9 z ) 4] 4] 1¢ 0 Op I® 4] Oac lq) 4] [ LD
G (r, D, 2) L L l, L | (21a)

where IS *) is given by equation (17b) with T, replaced by 7., and
. 2202
Oy = tan“[' cos ¢ +./(r2 —r?sin ¢):|. (21b)

z

(ii) If the wall temperature on r = r, is discontinuous along the peripheral angle at ® = 0, with T, ,(r,, ®*, z*)
for 0 < @* < @, and T, _(r,, D*, z*) for ®; < ®* < 0 and zero elsewhere, the radiative quantities resulting from
wall emission are

M, (r, ®,z) 1 1

2n 117 J:] c
qwr(ra (D5 Z) — f J‘{ 1»511) lr dQ + J‘d J‘o I‘(vn—) Ir dQ
qw(D(rv (Ds Z) 0 0 ICD Pa JOp ld)
Quw:(1, D, 2) L I

1 1

$c P0c l 2n *n l
+ J J. 1T L dQ+ J P T L dQ,  (22a)
¢85 J 0B ld) 0 8c l®

I, L
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where I *) are given by equation (17b) with T, replaced by 7, and

[ r,sin(®@—d,)
=tan | F—u—"—|, 22b
Z _r—racos(d)—(l)l)] (225)
¢p = tan~! {ﬂ} 220)
r—r,cos®
. rsin@-0,) ]
= e e P 22
$c = tan Lr—r,cos(®—d,) (224)

Axial-symmetric temperature field

Consider radiative transfer in a cylindrical medium with axial-symmetric temperature distribution; i.e. both
the medium temperature and wall temperature independent of ®. The radiation-transport equation and boundary
condition are given by

[. 0 ¢0+ 96 sinfsing ¢ N ]] T )/ )
sin -— sy —————— = v,z s
cos P co! e . % %, 20T, n
and 4
T
I(r*, 2%, %, 0%) = T2 %, 2%), (24)
T

where r*, z* are the coordinates at the wall.

It can be shown that equations (23) and (24), when expressed in the new independent variables s,(j = 1,2, 3)
given by equation (2), are identical to equations (10) and (11) which have the formal solution given by (1).
To determine the constant C, we note that equations (13a), (13c), (13d) hold also for the axial symmetric
situation which in turn gives equations (14b) and (14c). For the case of finite cylinder with axial symmetric
temperature distribution, it can be shown that the exact solutions are identical in form with equations (17-22),
by neglecting the temperature dependence of ®*. That the solutions for the axial symmetric case are directly
obtainable from the three-dimensional situation, by just neglecting ®*, can be explained by the fact that wall
contribution remains the same no matter at what ®* the e,, vector projected backwards meets the wall. This
identical nature of two solutions (the general and the axial symmetric) is well anticipated in view of s; in
three-dimensional case being independent of ®; and hence the physical distance (s, —s¥) of the given point
from the wall in the direction of e, also is independent of @.

Emitting—absorbing medium between concentric cylinders with finite length. Consider an emitting-absorbing
medium with axial symmetric temperature distribution inside concentric cylinders with finite length. The outer
and inner wall temperatures are given by T,(r,,z*) and Ti(r;, z*) respectively. The wall temperatures at z = ¢,
and z = ¢, are given by T)(r*,c,) and T»(r*, ;) respectively. In this case, it can be shown that the radiative
quantities are given by

M,(r,z) =y (6 1 2n—gp (e 1 2m—gp (n 1
4ar(r.2) =J f my dQ+J J ©4, d§2+f J @41 Lo
> 0 > Og b Oc

g:(r,2) I, I, I,

¢ O 1 dp O 1 ép n 1
+f jI;“ l, dQ+j JI;’ I, dQ+J jlf’ I, LdQ  (25a)
—¢p JO Iz —¢p JO; l —¢p JOr l

where 05, 0, I, IV, and I are given by equations (17f), (17g), (17a) and (18a), and

-

a2
0, =tan~! [’Eﬁ:ﬁﬁijﬁfﬂ@} (25b)
-4
_ 2_ 202
epstan—l[rcos¢ i("c T on ¢)], (25¢)
—C2
¢p=sin~! (;) (25d)

() = —
=

o [rcos ¢ —Jtrf —r?sin? ¢))/sin 0
nb[‘

%, T30, 52,53, b, 0) exp[os(31 —51)] 431 - (25¢)
0
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The radiative quantities resulting from wall emission is also given by equation (25a) with I and I{¥ replaced
by IV and I?, and I?? and I{” replaced by I and I where

19 = "? [, 2%] exp[ —aa(s; — s, (26a)
with
z* = z—cotO[rcos ¢ —/(rF ~r’sin®@)] and s;—sF =rcos¢—./(rF—r?sin?¢),
and
L= Z:i [ro.z*Jexp[ —auls; —s1)], (26b)

where z*, s; — st are given by equations (17¢) and (17¢). Equation (26b) could have been obtained from equations
(17b) by neglecting the dependence on @.

Two-dimensional temperature field

When the temperature distribution in a cylindrical medium is a function of r and @, and independent of z,
the radiation intensity is a function of the position vector R = re, and the directional vector e,. The radiation
transport equation and boundary condition are independent of z, i.e.

o 0 s
(sin fcos ¢§r 43 Grsm ¢ 6%> _a rsm d’% + oc,,)l = 0,0 THr, d)/n, 27
4
1%, 0%, 6%,0%) = 71 (% %), (8)
n

where r*, ®*, ¢*, and 6* are specified on the wall.

To obtain formal solution of equation (27) with boundary condition (28), it is convenient to recast these
equations in terms of the new variables s, and s, where s, = R.e, and s, = R.e, in which e, and e, are unit
vectors of the local polar coordinates given by

e, =cosde +singey, e, = —sing e, +cospes. (29)
It follows that
sy =R.e,=rcos¢, s;=R.e, = —rsing. (30)
Equations (27) and (28) in terms of the new variables are
(P + a;>1’ = 0,0 T} s1,52,9 /7, (31)
81
and
T}
I'(st, 53, ¢*) = — (s, 5%, 0%), (32)
i

where sf = r* cos ¢*, s3 = —r*sin ¢*, o = a,/sin 6, and I'(r, D, ) = I(r, D, ¢, H).

If the absorption coefficient is constant, the formal solution to equation (31), when written in the original
variables I, is given by equation (3). To determine C, we note that equations {13b) and (13c) also hold for the
two-dimensional situation, which in turn yields equations (14a) and (14b). When the solution for [ is obtained,
the radiative quantities are determined from

M(r,®) = J I(r,®,¢,00dQ, 4q,(r,®) = J Hr,®,¢,0,dQ, go(r,®) = J I(r,®,¢,0)le dQ, (33)
Q Q o

and g,(r, ®) = 0. We shall now consider some specific problems in a two-dimensional temperature field.
Emitting—absorbing medium inside an infinite cylinder. Consider an emitting-absorbing medium with temperature

distribution T{r,®) inside an infinite cylinder with wall temperatures at r =r, given by T,,(r,,®*) for

0 < ®* < ®, and T, _(r,, *¥) for ®; < ®* < 0 and zero elsewhere. By imposing boundary conditions, it can be
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shown that the radiative quantities resulting from medium emission are given by

My(r,®) e ra 1
4 (r, D) =J j I(r,®,¢,0)< I, »dQ, (34a)
qolr®) ) 7000 lo
where
o [[rcosd+rZ—rsin? $)]/sin0
I, = ;L o, T} (31,52, §, 0) exp[eg(31 — 51)] 5, (34b)
whereas those resulting from wall emission are given by
M, (r,®) o0 1 b [ 1
Gur(r, @) =J J IS dQ+J j <1, % dq, (35a)
o ®) ) TP b R [
where
TR LT S exp[—a“(’°°s"’+fi£'§"z sin” ‘ﬂ)} (35b)
T

with ®* = &+ ¢ —sin~!(r/r,sin @) and ¢, ¢, and ¢ given by equations (22b-22d).

Equation (35b) could have been obtained directly from the general three-dimensional case equation (17b) by
neglecting z* because the wall contribution in this case remains unaltered no matter at what z*, e, vector projected
backwards meets the wall. The limits 0 and 0. as given by equations (17f) and (17g) reduced to 0 and = when
¢; — —oo and ¢; — 0.

One-dimensional temperature field '

When the temperature distribution is a function of r alone, the radiation intensity is a function of the position
vector R = re, and the directional vector e,. The radiation-transport equation and boundary conditions are
given by

. . 4
sinBcosd)ﬁ—s——mesmqsi-ka,, I=a"GT” r, (36)
or r 0 n
and
4
10%,6%,0% = 71 . (37
n

It can be shown that equations (36) and (37) in terms of the new variables s; and s, given by equations (30),
reduce to equations with the same form as equations (31) and (32), which have the formal solution given by
equation (3). To determine C, we note that

s2 = 5%, (38)

which gives
cos¢* = + %\/(r"‘z—r2 sin? ¢). (39)

We shall now consider the cases of emitting-absorbing medium inside an infinite cylinder and inside and outside
of an infinite concentric cylinder where temperature distribution is a function of r and independent of ® and :z.

Emitting—absorbing medium inside an infinite cylinder. Consider an emitting-absorbing medium with temperature
T,{r) in an infinite cylinder with wall temperature given by T, at r = r,. Imposing the boundary condition gives

a [reos ¢ +J(rZ —r? sin? ¢)]/sin 0 .
Lr,¢,0)= - J o, T, (81, 52, 0, ¢p)exp[a, (51 —5,)] 3], (40a)

0

4 222
Iw(r,d),g):g%j,_exp[_a,,(rcos¢+\s/i::; r?sin qb))] (40b)
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The radiative quantities resulting from medium emission are

2 T
{M"(r)} = f J Ig(r.d),()){l}dﬂ. (41a)
qgr(r) $=0J0=0 l,

and those resulting from wall emission are

2 n
{M“'“’} = J j Iw(r,qﬁ,()){l}dﬁ. (41b)
Gur(¥) $=0J0=0 l,

Equation (40b) for a one-dimensional case could have been obtained directly from the two-dimensional case by
neglecting ®* or from the three-dimensional case by neglecting both ®* and z* and by letting ¢; > — o0 and
¢, — o0 ; thereby finding the appropriate limits for 6 as being from 0 to . The reason for neglecting ®* and z* is
because the wall contribution in this case remains unaltered, no matter at which ®* and z*, e, vector projected
back meets the wall.

We shall now prove that equation (40) is indeed equivalent to a much more complicated solution obtained
by Kestin [2] who gave two separate expressions for the radiation intensity for 0 < x < r,cos 8 and
roc08 f < x < 2r,cos f. The complication of Kestin’s solution is owing to the particular coordinate system chosen
for the problem. To show the equivalence of the two solutions, we note that the angles o and § in Kestin’s
paper are related to § and ¢ in the present work by the relations

T

=—_9 .
x > . (42a)
. ro.
sinf = —sin ¢. {42b)
With the aid of equations (42), the integral
J‘r dr’
w FOUL )
in Kestin’s paper can be integrated to give
"odr ' rdr’ s 2
— = — e = — 01 . — . 43
J; Fir p) Oy L \/(rz—rf snf) ag(rcosp+/[rs—rsing]) (43)

Thus our expression for wall emission is identical to that obtained by Kestin. For the medium emission, we
note that the relation dx = rdr/[r*--rZsin® §]*/? in Kestin’s paper can be shown to be equivalent to

dr dr

-—— = (44
s, F(r,f) cos¢ )
Furthermore, since s; = rcos ¢, and s, = rsin ¢ = constant, the differentiation of s; and s, gives
dr
§1=—-. (45)
cos ¢

Equations (44) and (45) establish the identity between dx and ds, in two papers under comparison. With the
aid of these equations, it is now apparent that Kestin’s expression for medium emission (0 < x < r,cos )

exp[l j o } exp[_ ! J Ld_”;]?lf(r’)
L o) = — — LR FED)] f " Fi "B)ﬁ) LA (46)

U

with pu = cosa

can be reduced to our expression given by equation (40a).

Emitting—absorbing medium between infinite concentric cylinders. Consider an emitting-absorbing medium with
axial symmetric temperature distribution between. infinite concentric cylinders with outer and inner wall
temperatures given by T,(r,) and T;(r;) respectively. By imposing the boundary conditions, it can be shown that
the radiative quantities resulting from medium emission are given by

. - 2n—d¢, ("n
{MM} - J J 1909, o){l}dmf J 1.4, t)){l}dﬂ, @)
qgr(r) “¢p JO [' » 0 ]r



Multi-dimensional radiative transfer in non-isothermal cylindrical media 253

where
. P {roos - Jirt —r?sin? ¢))/sin
= - f 4, T, (51, 52,9, O explo,(5) — 51)] d51, (48a)
0
o [rcos ¢+ Jird —r?sin® ¢))fsin (!
= - J s T,51, 52, ¢, ) exploa(3: — 5] d3, (48b)
o .

and those resulting from wall emission are also given by equation (47) with I/ and I{? replaced by I and I
which are given by equations (26) by dropping the dependence on z*.

Emitting—absorbing medium outside of an infinite cylinder
For the case of an emitting-absorbing medium with temperature distribution T,{r) outside of an infinite cylinder,
solution can be obtained from equation (47) by letting r, — 0 and T, = 0.

RESULTS AND DISCUSSIONS
Numerical results are obtained for special cases of isothermal media inside cylinders and concentric cylinders
with finite and infinite length, bounded by isothermal and piecewise isothermal walls. In these special cases the
expressions for radiative quantities given in the previous section can be simplified considerably. For example,
the radiative quantities in an isothermal medium inside a finite cylinder bounded by isothermal walls at z = +¢,
and piecewise isothermal wall at r = r, given by equations (20) and (22) can be simplified to give

4M,(7,®,2) 1

0,703 | T rn o {I——exp[- Bu(%+5)]} PN

ng(F’ q)a 2) T Je=0J0 cosf l@
0,.(.0,%) I,

dQ

N J“’c {1__&?[_ Bu(Fcos ¢ +/(72 — 7 sin’ q&))-}

sin f

5 T e

—
Y

1

4 (*2x " [ % e
Ly J f{l*exp _ Bulz ‘)]} b Laa, (49
T Jo=0 Joc | cost Iy

L

and
4M, (7. ®,3) 1
~ -~ 4 P2n By > g X
g o
wall, 9, Z T Je=0J0 08
Q””.’(F‘) (1)9 E) IZ
fl ~
4 ros P8 [ 5 (32 32 i 43 )]
+i_J‘ J exp ‘_Bu(rcosqﬂ—\{(r,, #sin? ¢)) Jb L 0
T ). Jos | sinf 1 1ls -
\IZ/
rl '\
4 e O o P =2 =2 a2 2aY]
LT exp “Bu(rcosqi-h./(r‘, #sin® ¢)) <I, 40
T Jos Jos L sinf A1l
\I:/

4 *2n ;4 % e
VB f j exp[~ Buz "J b Laa, (4o)
T Jo=0Jec cosl I»
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where M = M/4oT}, Q = q/oT}, T, = T,/T,. ¥ = /L, 2= z/L, & = ¢/L and Bu = a,L, with T, and L denoting
the reference temperature and reference length. For simplicity of presentation and discussion, we shall henceforth
omit the “ “and all radiative quantities are understood to be normalized variables. For the special case of
1,=T,. = Ty = T, = 1, equations (49a) and (49b) yield

Mg+Mw = 1* Qgr+Qwr = 0~ Qg‘h+Qwﬂ' = 0- Qg:+Qw: - 0 (50)

Relations analogous toequations (50) are valid whenever medium and walls are maintained at the same temperature.

Figure 2 shows the comparison of radiation fields
along the radial direction at plane z =0, for an
isothermal medium (T, =1) enclosed by a finite
(r, = c=1) as well as an infinite (r, = 1 and ¢ — <0)
cylinder with isothermal walls (T, = 1). A similar
comparison for finite and infinite concentric cylinders
(r, = 1,r; = 0-5) is shown in Fig. 3. In both of these
plots, it is observed that for a specific value of Bu, the
value of M, as well as Q, (= —Q,,) increases as the
length of cylinder is increased, (ii) the effect of length, ¢,
however, is negligible for Bu = 5-0 (i.e. for an optically
thick gas) indicating, thereby, that a three-dimensional
problem can be approximated by a two-dimensional
one without any significant loss of accuracy under these
circumstances, (iii) the boundary-layer behavior near
the walls becomes more pronounced as the magnitude
of Bu is increased; this phenomenon can be explained
on account of the exponential damping effect: that is,
for large Bu. the wall effects are felt only in the region
near the walls, (iv) for small values of Bu, M, » M,
and Q, (= —Q,,) is small everywhere. The detailed
variation of radiative quantities along the radius is,
however, different for the case of a cylinder from that of
a concentric cylinder. For the case of an isothermal

F1G. 1. Cylindrical coordinate system.
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F1G. 2. Comparison of radiation fields along (r, 0) in an isothermal medium inside finite
and infinite cylinders with isothermal walls.
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medium inside a cylinder (Fi
the center (r = 0) and decrease

whereas Q, is zero at the center and increases to a
maximum at the wall (r = 1). In case of an isothermal
medium between concentric cylinders (Fig. 3). M,
is a maximum at a point near halfway between inner
and outer cylinders. The value of Q, is negative on the
surface of inner cylinder, and positive on the surface of
outer cylinder. This result is intuitively anticipated

because the net heat flux in

2), M, is maximum at
s away from the center

zero wall temperature, will cross the inner surface in
the negative direction of r, whereas it will cross the
outer surface in the positive direction of r.

Figure 4 shows the comparison of radiative
quantities along z-direction on the wall at r = 1, for an
isothermal medium enclosed in an isothermal cylinder
as well as isothermal concentric cylinders with finite
length. It is shown that the variation of radiative

quantities along (1,z) in Figs. 4(a) and (b) has

because the net heat flux in the r-direction from the ualitatively the same ub pe as those along (r,0) in
hot medium, enclosed by inner and outer cylinders at  Figs. 2(a) and (b). In Fig. 4 it is shown that values of
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M, and Q, (= —Q,,) in case of a cylinder are higher
than those between concentric cylinders. Also it is ob-
served that M, and Q, have maximum values at z =0
and the same decrease as z = 1 is approached. This is
also a well anticipated result and is explainable by the
fact that at z = 1, the radiative quantities associated
with wall become more predominating than those
associated with the medium due to the effect of emitting
plates placed at z = + 1.

The effects of discontinuous wall temperature at
r=1 on radiative quantities resulting from wall
emission in a finite cylinder are shown in Figs. 5 and
6. Figure 5 shows the case where wall temperature is
discontinuous at ® = 0 and ® = n (with T, = 1-1 for
n<®<2r and T,. =12 for 0 < ® < ) whereas
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FiG. 5. Effects of discontinuous wall
temperature in ®@-direction on the
radiation field inside a finite cylinder.

Fig. 6 shows the case where wall temperature is
discontinuous at z = 0 (with T,. = I"'1 for —1 <z <0
and T,, = 12 for 0 < z < 1). It is observed from these
plots that: (i) at the point where wall temperature is
discontinuous, M, has a jump in value due to
differential wall temperatures across the point of dis-
continuity; this jump depends only on the wall tem-
peratures and is independent of Bu, (ii) whereas the
heat flux component is continuous in the direction in
which wall temperature is discontinuous, heat flux
components in all other directions are discontinuous.
For example, Fig. 5 shows the case where wall
temperature at r = 1 is discontinuous in @ direction.
It is observed in this plot that Q,,, is continuous but
Q. is discontinuous at ® = 0. Similarly. Fig. 6 shows
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FiG. 6. Effects of discontinuous

wall temperature in z-direction on

the radiation field inside a finite
cylinder.
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the case where wall temperature is discontinuous in
z-direction. It is shown that Q,, is continuous whereas
Q., is discontinuous at z = 0. (iij) Away from the
wall (r = 0-5 for example), all radiative quantities are

continuous.

The first two observations can be shown analytically
as follows. Consider the case where wall temperature
(at r=r,) is discontinuous at ® =0, and @ =7, as
indicated in Fig. 5. On the wall at r = r,, equation (49b)

can be rewritten as
(for0<d<n
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G (P, ,2)
0270, @, 2)

T r" J"s [ Bu('2+5)j|
= — exp| —
T Js=0J0 cosf

dQ

— A A T T =
Pl il

4 ¢s ("0 ¥
+7’;-J f exp[_ZBurj,,cosd)] 40
T Joo Jos sin 0
1
. 4 J-n/zj‘ecexp[_zBuFf,cosqb:l A 40
T Jos Jos sin ly
L,
1
T4 (3w Lo
+ ”*j J LT
T a2 Jo | o
L
(1
[ 2Buf,cos ¢ <l,
3n/2 ,,B T sing Iy
\lz

4 f2n 1 s
+ T_z epr:— Buz=31 )1 +dQ.
T Jo=0Jec cos Iy

lz 4
(ii)forr < ® < 2n

4M,,(7,, D, %)
Our(70 ®,2)
me(;os (I)a 2)

QWZ Fo’(b E) 1

u(z+2a) | |1

" -dQ
j J [ cosf ] lo
L

(51a)

1
4 (ui2 6 2Bu
+’T:, J‘exp[— Bur:ocosdil I 40
T Jou Jos sin ly
L
1
T4 (302 8
+ =2 J b dQ
T Juyz Jan | lo
L
1
4 ¢p 8 ¥
+T:,_J' J"exp[_ZBur:ocosqﬁ} l, 40
T JanzJes sin 6 Iy
L
1
+']24+ J%rcexp[—ZBu?.GCOS(p] I 40
T Jés Jos sin ly
L
1
T4 2n 3 B 5 _ )
+_2J jexp[— G| 1k Lo (sib)
T Je=0Jec cosf lp
L.

The first and the last integrals in equations (51a) and
(51b) account for the isothermal wall emission from
the top and bottom plates at z = +¢. The remaining
integrals represent the wall emission at r=r,; the
physical meaning of these integrals can be easily seen in
Fig. 7. The second, third, and fifth integrals in
equation (51a) represent incident radiation at the point
P while the fourth integral represents the local wall
emission. Similarly, the second, fourth and fifth
integrals represent incident radiation at the point M

FiG. 7. Physical significance of the
integrals in equations (51a) and (51b).
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with the third integral representing the local wall
emission at the same point. Consider the points at
O=0+andP=0— onthewall(r=1)andatz=0
(see Fig. 7). It can be shown from equations (51a) and
(51b) that at these points incident radiation are
identical, and that the radiative quantities, if they are
different at all, are due to the local wall emission
which in turn depends on the local wall temperature.
Thus the jump in values at ® =0 are given by the
difference resulting from local wall emission, i.e.

4AMW (12)4_(11)4 3n/2 g 1
sou b=[02m) 0 1 g
AQus T ¢=n/2 Jo=0 o
1-22
=< 061
0

These values are indeed confirmed by the numerical
results.

The above argument is only valid at the wall. Away
from wall there is no local wall emission, and radiation
from all points on the wall are incident radiation. Since
any point in the radiation field “sees” all parts of the
walls, the radiative quantities are continuous away from
the wall. It should be noted that the value of Q,¢ in
Fig. 5(c) is almost symmetrical about ® = 0 at Bu = 1.
It is expected that for higher values of Bu, the
unsymmetrical distribution of Q.¢ will become
apparent: because for higher values of Bu, most of
incident radiation originated from the wall at a position
further away, is absorbed by the optically thick medium
before it can reach the point under consideration, and
hence local emission predominates more at this point,
and thus bring out the effect of discontinuous wall
temperature on Q,q more clearly. Furthermore, since
M, is discontinuous along ® (at r = 1) in Fig. 5, and
is discontinuous along z (at r=1) in Fig. 6, the
derivatives 6 M,,/o® in Fig. 5 and éM,,/éz in Fig. 6 are
not, therefore, unique at r=1._ Consequently,
differential approximation cannot be applied in such
a case [15].

CONCLUDING REMARKS

In this paper we have obtained the exact expressions
for multi-dimensional radiative heat flux in cylindrical
coordinate system, in terms of its temperature
distribution, explicitly. With this expression for
radiative heat flux, exact formulation of multi-
dimensional radiation-coupled energy-transport prob-
lems in cylindrical coordinate is now possible. The
result will lead to a set of integro-differential equations
which will require numerical solutions.

The key to the success of the present approach in
obtaining exact expressions for multi-dimensional

radiative heat flux, in terms of temperature distribution,
lies in the identification of the coordinate trans-
formation, equation (2), the relations [14] for a three-
dimensional temperature field, and the corresponding
equations for a two-dimensional temperature field.
These relations are different from the corresponding
relations for the rectangular coordinate system
presented in {15].
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TRANSFERT MULTIDIMENSIONNEL PAR RAYONNEMENT DANS UN
MILIEU CYLINDRIQUE NON ISOTHERME LIMITE PAR DES PAROIS
NON ISOTHERMES

Résumé—On décrit une approche systématique du calcul exact du flux thermique multidimensionnel
par rayonnement dans un milieu non isotherme qui émet et absorbe, avec des parois non isothermes.
Des solutions exactes finies sont obtenues pour le transfert & intérieur de cylindres (finis ou infinis)
et de cylindres concentriques avec une distribution de température tridimensionnelle. Dans le cas spécial
d’une situation axisymétrique et monodimensionnelle, la solution exacte obtenue est équivalente a une
solution exacte déja obtenue dans une autre étude, bien que celle qui est présentée ici soit plus élégante
dans I'approche et de forme plus simple. On présente aussi des résultats numériques dans le cas d’un
milieu isotherme limité par des parois isothermes par morceaux.

MEHRDIMENSIONALER STRAHLUNGSAUSTAUSCH IN NICHT ISOTHERMEN,
ZYLINDRISCHEN STOFFEN MIT NICHT ISOTHERMEN GRENZFLACHEN

Zusammenfassung—FEs wird eine systematische Niherung fiir die exakte Berechnung des mehrdimen-
sionalen Strahlungs-Wirmestroms in einem zylindrischen, emittierenden und absorbierenden, nicht
isothermen Stoff mit nicht isothermen Grenzfliichen beschrieben. Man erhilt exakte Losungen in
geschlossener Form fiir den Strahlungsaustausch innerhalb (endlicher und unendlicher) Zylinder und
konzentrischer Zylinder mit vorgegebener dreidimensionaler Temperaturverteilung. Fiir den speziellen
Fall der eindimensionalen zylindrischen Symmetrie wird gezeigt, dal die exakte Losung, die in der
vorliegenden Arbeit gewonnen wird, der exakten Losung entspricht, die in einer fritheren Arbeit angegben
wurde, obgleich die vorliegende Losung viel eleganter in der Niherung und einfacher in der Form ist.
Fiir den Fall des isothermen Stoffes, der durch teilweise isotherme Winde begrenzt ist, werden auch
Zahlenwerte angegeben.

MHOIOMEPHbIN HYﬂMCTblVl TEMJIOOBMEH B HEM30TEPMUYECKOW
LHNJIWUHOAPUYECKON CPEAE C HEM30OTEPMHUYECKMMKU CTEHKAMMU

Anrotauus — B paboTe onmchIBaETCH METOL TOYHOTO PACYETa MHOTOMEPHOIO NYYUCTOrO TEMIOBOTO
[TOTOKA B LMJIMHIPUYECKOM HM3Tyvalolle-Noraollarotieidl HEM30TEPMUYECKON Cpede C HEM3O0TEPMHU-
YecKUMHM cTeHkamu. [Toy4eHbl TOYHbIE pellieHUs B 3aMKHYTOH (OpMe Ia Ay4YHCTOro mepeHoca
BHYTPH KOHEYHBIX U BECKOHEUYHbIX LIMAMHAPOB, A TAKXKE B KOHLEHTPHYECKHX LMIIMHAPAX C 3aJaHHbIM
TPEXMEPHBIM PacrpenesicHneM TemnepaTypsl. [TokasaHo, 4TO 4/si YaCTHOTO CiTy4as OZHOMEPHOTO
CHMMETPUYHOIO LIMAMHAPA TOMHOE peLIeHHe, MOJyYeHHOE B ITOM HCCIEAOBAHHH, IKBHBAJIEHTHO
TOYHOMY PELUEHHIO Mpeablayiueii paboThbl, XOTsA HacTosAlEe pellesune sBnseTcs boiee 3IeraHTHLIM
1 mpocThiM o popme. TTpeacTasneHbl TAKKe YUCNEHHbIE PE3YIbTaTbl A/ M30TEPMHUYECKOH Cpensbl,
OrpaHMuEHHON KYCOYHbIMH H30TEPMUYECKUMH CTEHKAMM.
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